

STUDIEORDNING FOR KANDIDATUDDANNELSEN (CAND.POLYT.) I INDEKLIMA OG ENERGI, 2017, VERSION 2

CIVILINGENIØR AALBORG

MODULER SOM INDGÅR I STUDIEORDNINGEN

INDHOLDSFORTEGNELSE

Ventilation, Airflow and Contaminant Transport in Buildings 2021/2022	. 3
Numerical Methods 2021/2022	5
Fluid Mechanics and Computational Fluid Dynamics 2021/2022	. 7
Building Related Fluid Mechanics 2021/2022	9
Integrated Design of Buildings and Building Services 2021/2022	. 11
Stochastic Modelling and Design Optimisation 2021/2022	13
Integrated Building Energy Design 2021/2022	. 15
Environmental Assessment Methods and Life Cycle Cost Analysis 2021/2022	17
IT-systemudvikling 2021/2022	19
Fault Detection and Diagnosis in Buildings 2021/2022	. 21
Academic Internship 2021/2022	23
Master's Thesis 2021/2022	25
Master's Thesis 2021/2022	27
Master's Thesis 2021/2022	29
Advanced Modelling of Energy Transport in Buildings and HVAC Systems 2021/2022	. 31
Building Commissioning and Operation 2021/2022	33

VENTILATION, AIRFLOW AND CONTAMINANT TRANSPORT IN BUILDINGS

2021/2022

PREREQUISITE/RECOMMENDED PREREQUISITE FOR PARTICIPATION IN THE MODULE

Students holding a bachelor degree from another university than Aalborg University must pass the course Problem Based Learning and Project Management at Aalborg University, prior to sitting the exam.

The module builds on knowledge gained in the modules Numerical Methods, Fluid Mechanics and Computational Fluid Dynamics, Building Related Fluid Mechanics or similar.

CONTENT, PROGRESS AND PEDAGOGY OF THE MODULE

Objective:

Students who complete the module:

LEARNING OBJECTIVES

KNOWLEDGE

- Must understand the theoretical and experimental assessment of heat, mass, and momentum transfer in ventilated enclosures
- Must understand the relationship between the thermal comfort, indoor air quality and health issues and the heat, mass and momentum transfer in the micro-environment of a human being

SKILLS

- Must be able to develop and perform model and/or full-scale experiments related to fluid flow and contaminant transport in ventilated enclosures
- Must be able to measure, evaluate and further develop various flow elements for typical room air distribution systems.
- Must be able to perform CFD simulations in ventilation settings including the establishment of proper boundary conditions
- · Must have the ability to design and evaluate different types of air distribution systems in a room and in a building.

COMPETENCES

- Must be able to identify and discuss the optimal solution for an air distribution system based on theory and/or experiments
- Must be able to perform and reflect on experiments related to personal exposure assessment and contaminant transport
- Must be able to communicate the results of the project work in a project report
- Must be able to contribute successfully to teamwork within the problem area and make a common presentation of the result of the project work

TYPE OF INSTRUCTION

Project work with supervision supplemented with instructions, workshops, presentation seminars, lab tests, etc.

EXTENT AND EXPECTED WORKLOAD

Since it is a 15 ECTS project module, the workload is expected to be 450 hours for the student.

EXAM

EXAMS

Name of exam	entilation, Airflow and Contaminant Transport in Buildings	
Type of exam	Oral exam based on a project Oral exam based on presentation seminar and project rapport.	
ECTS	15	
Assessment	7-point grading scale	
Type of grading	External examination	
Criteria of assessment	The criteria of assessment are stated in the Examination Policies and Procedures	

FACTS ABOUT THE MODULE

Danish title	Ventilation, luftstrømninger og forureningstransport i bygninger
Module code	B-IE-K1-1
Module type	Project
Duration	1 semester
Semester	Autumn
ECTS	15
Language of instruction	Danish and English
Location of the lecture	Campus Aalborg
Responsible for the module	<u>Chen Zhang</u> , <u>Rasmus Lund Jensen</u>
Time allocation for external examiners	В

Study Board	Study Board of the Build Environment
Department	Department of the Built Environment
Faculty	Faculty of Engineering and Science

NUMERICAL METHODS 2021/2022

CONTENT, PROGRESS AND PEDAGOGY OF THE MODULE

Objective:

Students who complete the module:

LEARNING OBJECTIVES

KNOWLEDGE

- · Must be able to understand the analytical solution of partial differential equations including
 - ° Linear equation systems, Gaussian elimination, factorization methods
- · Must be able to understand numerical solution methods including
 - o Iterative solution of equations e.g. Gauss-Seidel, ill-conditioned systems of linear equations, matrix eigenvalue problems, solution of non-linear equations, interpolation, splines, numerical solution of integrals, numerical solution of first-order and second-order differential equations

SKILLS

- · Must be able to apply numerical methods to solve mathematical problems
- Must be able to apply finite difference and finite element methods including
 - The finite difference method
 - o The finite volume method
 - Difference approximations, elliptic equations, Dirichlet og Neumann boundary conditions, parabolic equations, explicit and implicit methods, the Theta method, hyperbolic equations
 - The finite element method

COMPETENCES

- · Must be able to apply numerical methods in engineering
- Must be able to contribute independently to professional and multidisciplinary work with a professional knowledge on numerical methods
- · Must be able to identify personal learning needs and be able to structure the learning within numerical methods

TYPE OF INSTRUCTION

Lectures, etc. supplemented with project work, workshops, presentation seminars, lab tests.

EXTENT AND EXPECTED WORKLOAD

Since it is a 5 ECTS project module, the workload is expected to be 150 hours for the student.

EXAM

Name of exam	Numerical Methods
Type of exam	Written or oral exam Individual oral or written exam
ECTS	5
Assessment	7-point grading scale

Type of grading	Internal examination
Criteria of assessment	The criteria of assessment are stated in the Examination Policies and Procedures

Danish title	Numeriske metoder
Module code	B-IE-K1-2
Module type	Course
Duration	1 semester
Semester	Autumn
ECTS	5
Language of instruction	English
Location of the lecture	Campus Aalborg
Responsible for the module	Chen Zhang, Rasmus Lund Jensen

Study Board	Study Board of the Build Environment
Department	Department of the Built Environment
Faculty	Faculty of Engineering and Science

FLUID MECHANICS AND COMPUTATIONAL FLUID DYNAMICS

2021/2022

CONTENT, PROGRESS AND PEDAGOGY OF THE MODULE

Objective:

Students who complete the module:

LEARNING OBJECTIVES

KNOWLEDGE

- · Must have knowledge about fluid kinematics
- Must have knowledge about stresses in fluids, equation of motion, constitutive models and Navier-Stokes
 equations
- Must have knowledge about ideal fluids and potential flows, including application of potential theory to simple problems.
- · Must have knowledge and understanding of Reynolds averaging and turbulence models
- Must be able to describe turbulent and laminar boundary layers including understanding of momentum equation for boundary layers
- · Must have knowledge about numerical methods in fluid mechanics.
- · Must have knowledge about the finite volume method of computational fluid dynamics.
- · Must have knowledge about mesh types and boundary conditions.

SKILLS

- · Must be able to describe assumptions and limitations of mathematical models for different types of flows
- Must be able to apply appropriate analytical, semi-empirical and numerical methods for mathematical description of fluid dynamic problems.
- · Must be able to evaluate results from such methods

COMPETENCES

- Must be able to apply proper terminology in oral, written and graphical communication and documentation within fluid dynamics.
- Must be able to apply the topic of the module in multi-disciplinary contexts.

TYPE OF INSTRUCTION

Lectures, etc. supplemented with project work, workshops, presentation seminars, lab tests.

EXTENT AND EXPECTED WORKLOAD

Since it is a 5 ECTS project module, the workload is expected to be 150 hours for the student.

EXAM

Name of exam	Fluid Mechanics and Computational Fluid Dynamics
Type of exam	Written or oral exam Individual oral or written exam

ECTS	5	
Assessment	7-point grading scale	
Type of grading	Internal examination	
Criteria of assessment	The criteria of assessment are stated in the Examination Policies and Procedures	

Danish title	Strømningslære og CFD
Module code	B-IE-K1-3
Module type	Course
Duration	1 semester
Semester	Autumn
ECTS	5
Language of instruction	English
Location of the lecture	Campus Aalborg
Responsible for the module	<u>Chen Zhang</u> , <u>Rasmus Lund Jensen</u>

Study Board	Study Board of the Build Environment
Department	Department of the Built Environment
Faculty	Faculty of Engineering and Science

BUILDING RELATED FLUID MECHANICS 2021/2022

CONTENT, PROGRESS AND PEDAGOGY OF THE MODULE

Objective:

Students who complete the module:

LEARNING OBJECTIVES

KNOWLEDGE

- · Must obtain a detailed knowledge of building related heat, mass, and momentum transport
- · Must obtain knowledge of building related application of similarity principles and turbulence modelling
- · Must understand different simplified procedures, as the generation of flow elements
- · Must understand the principles of heat and mass transfer in the micro-environment of a human being

SKILLS

- Must be able to develop the basis for model and/or full-scale experiments
- Must be able to develop flow elements for room air distribution
- · Must be able to setup and perform advanced CFD simulations of ventilated buildings including occupant modelling
- Must be able to develop proper boundary conditions for CFD in ventilation
- · Have the ability to choose, design and evaluate the different types of air distribution in a room and in a building
- · Have the ability to apply relevant models in building related fluid mechanics

COMPETENCES

- The student must be able to establish, evaluate and reflect on models on room air distribution and personal exposure assessment in building related fluid mechanics
- The students must be able to combine and reflect on the various methods applied in the area of building related fluid mechanics and establish relevant solutions

TYPE OF INSTRUCTION

Project work with supervision, etc. supplemented with instructions, workshops, presentation seminars, lab tests.

EXTENT AND EXPECTED WORKLOAD

Since it is a 5 ECTS project module, the workload is expected to be 150 hours for the student.

EXAM

Name of exam	Building Related Fluid Mechanics
Type of exam	Written or oral exam Individual oral or written exam
ECTS	5
Assessment	7-point grading scale
Type of grading	Internal examination

Criteria of assessment	The criteria of assessment are stated in the Examination Policies and Procedures
------------------------	--

Danish title	Bygningsrelateret strømningsmekanik
Module code	B-IE-K1-4
Module type	Course
Duration	1 semester
Semester	Autumn
ECTS	5
Language of instruction	English
Location of the lecture	Campus Aalborg
Responsible for the module	<u>Chen Zhang</u> , <u>Rasmus Lund Jensen</u>

Study Board	Study Board of the Build Environment	
Department	Department of the Built Environment	
Faculty	Faculty of Engineering and Science	

INTEGRATED DESIGN OF BUILDINGS AND BUILDING SERVICES

2021/2022

PREREQUISITE/RECOMMENDED PREREQUISITE FOR PARTICIPATION IN THE MODULE

The module builds on knowledge corresponding to 1st semester and knowledge gained in the modules Stochastic Modelling and Design Optimisation, Integrated Building Energy Design and Environmental Assessment Methods and Life Cycle Cost Analysis or similar.

CONTENT, PROGRESS AND PEDAGOGY OF THE MODULE

Objective:

Students who complete the module:

LEARNING OBJECTIVES

KNOWLEDGE

- Must have knowledge about basic architectural design methodology, the integrated design process and integrated building concepts
- Must have knowledge on choice of passive energy technologies in relation to indoor environment and building services
- · Must be able to understand the interplay between microclimate, buildings and their services
- Must be able to understand the interplay between sustainable energy system, building energy demand and renewable energy production
- Must have knowledge of stochastic performance modeling of buildings

SKILLS

- · Must be able to apply and combine design methods for passive energy technologies
- · Must be able to apply and combine design methods for energy efficient building design
- Must be able to apply, combine and evaluate advanced methods for analysis of the interplay between energy systems, architectural concepts, building design, building use, outdoor climate and HVAC systems
- Must be able to evaluate building energy performance and assess their robustness through sensitivity and uncertainty analyses

COMPETENCES

- Must be able to apply proper terminology in oral, written and graphical communication and documentation of problems and solutions within integrated design of buildings and building services.
- Must be able to handle complex and research-oriented cases related to development of low-energy, energy-neutral and energy-producing buildings
- Must be able to take part in a professional and interdisciplinary collaboration on design of integrated building and energy concepts
- · Must be able to communicate the results of the project work in a project report
- Must be able to contribute successfully to teamwork within the problem area and make a common presentation of the result of the project work

TYPE OF INSTRUCTION

Project work with supervision supplemented with instructions, workshops, presentation seminars, lab tests, etc.

EXTENT AND EXPECTED WORKLOAD

Since it is a 15 ECTS project module, the workload is expected to be 450 hours for the student.

EXAM

EXAMS

Name of exam	Integrated Design of Buildings and Building Services	
Type of exam	Oral exam based on a project Individual oral exam based on presentation seminar and project rapport.	
ECTS	15	
Assessment	7-point grading scale	
Type of grading	Internal examination	
Criteria of assessment	The criteria of assessment are stated in the Examination Policies and Procedures	

FACTS ABOUT THE MODULE

Danish title	Integreret design af bygninger og bygningsinstallationer
Module code	B-IE-K2-5
Module type	Project
Duration	1 semester
Semester	Spring
ECTS	15
Language of instruction	Danish and English
Location of the lecture	Campus Aalborg
Responsible for the module	<u>Tine Steen Larsen</u>

Study Board	Study Board of the Build Environment
Department	Department of the Built Environment
Faculty	Faculty of Engineering and Science

STOCHASTIC MODELLING AND DESIGN OPTIMISATION 2021/2022

CONTENT, PROGRESS AND PEDAGOGY OF THE MODULE

Objective:

Students who complete the module:

LEARNING OBJECTIVES

KNOWLEDGE

- Must be able to understand the background and theory of sensitivity analysis and uncertainty analysis in indoor environmental and energy engineering
- · Must be able to explain selected methods for stochastic modelling of indoor climate and energy consumption
- · Must be able to explain how sensitivity analysis and uncertainty analysis are used in design optimization

SKILLS

- Must be able to investigate, explain and develop indoor environmental and energy engineering models using sensitivity analysis and uncertainty analysis
- Must be able to quantify the influence of uncertainty in indoor environmental and energy engineering using stochastig modelling
- · Must be able to apply sensitivity analysis and uncertainty analysis in design optimization

COMPETENCES

- Must be able to choose proper modelling of single zone and multizone buildings and discuss inherent model limitations
- Must be able to discuss and reflect on the accuracy of indoor environmental and energy engineering models subject to uncertainty

TYPE OF INSTRUCTION

Lectures, etc. supplemented with project work, workshops, presentation seminars, lab tests.

EXTENT AND EXPECTED WORKLOAD

Since it is a 5 ECTS project module, the workload is expected to be 150 hours for the student.

EXAM

Name of exam	Stochastic Modelling and Design Optimisation	
Type of exam	Written or oral exam Individual oral or written exam	
ECTS	5	
Assessment	7-point grading scale	
Type of grading	Internal examination	
Criteria of assessment	The criteria of assessment are stated in the Examination Policies and Procedures	

Danish title	Stokastisk modellering og design optimering
Module code	B-IE-K2-6
Module type	Course
Duration	1 semester
Semester	Spring
ECTS	5
Language of instruction	English
Location of the lecture	Campus Aalborg
Responsible for the module	<u>Tine Steen Larsen</u>

Study Board	Study Board of the Build Environment	
Department	Department of the Built Environment	
Faculty	Faculty of Engineering and Science	

INTEGRATED BUILDING ENERGY DESIGN 2021/2022

CONTENT, PROGRESS AND PEDAGOGY OF THE MODULE

Objective:

Students who complete the module:

LEARNING OBJECTIVES

KNOWLEDGE

- · Must have knowledge about the integrated design process
- · Must have knowledge about integrated building concepts
- · Must have knowledge of basic architectural design methodology
- · Must have knowledge of methods for energy efficient building design
- · Must have knowledge of passive energy technologies
- · Must be able to understand the microclimate around buildings
- · Must be able to understand the interplay between microclimate and buildings
- · Must be able to describe the calculation methods related to airflow and pressure distribution around buildings
- · Must be able to explain the wind and bouyancy driven flows in single zone modelling
- · Describe the mathematical models for multizone modelling

SKILLS

- · Must be able to apply basic design methods for passive energy technologies
- Must be able to apply advanced methods for analysis of the interplay between building design, building use and outdoor climate
- · Must be able to simulate and analyze the natural airflow of a single zone and a multizone building

COMPETENCES

- Must be able to choose proper modelling of natural and hybrid ventilation in single zone and multizone buildings and discuss inherent model limitations
- · Must be able to discuss and reflect on the prospects and limitations of integrated building energy design

TYPE OF INSTRUCTION

Lectures, etc. supplemented with project work, workshops, presentation seminars, lab tests.

EXTENT AND EXPECTED WORKLOAD

Since it is a 5 ECTS project module, the workload is expected to be 150 hours for the student.

EXAM

Name of exam	Integrated Building Energy Design
Type of exam	Written or oral exam Individual oral or written exam
ECTS	5
Assessment	7-point grading scale

Type of grading	Internal examination
Criteria of assessment	The criteria of assessment are stated in the Examination Policies and Procedures

Danish title	Integreret energidesign af bygninger
Module code	B-IE-K2-7
Module type	Course
Duration	1 semester
Semester	Spring
ECTS	5
Language of instruction	English
Location of the lecture	Campus Aalborg
Responsible for the module	<u>Tine Steen Larsen</u>

Study Board	Study Board of the Build Environment
Department	Department of the Built Environment
Faculty	Faculty of Engineering and Science

ENVIRONMENTAL ASSESSMENT METHODS AND LIFE CYCLE COST ANALYSIS

2021/2022

CONTENT, PROGRESS AND PEDAGOGY OF THE MODULE

Objective:

Students who complete the module:

LEARNING OBJECTIVES

KNOWLEDGE

- Must have knowledge about the design philosophy and calculation methods for minimizing the environmental impact of a building throughout its life cycle
- Must have knowledge about the energy and environmental assessment of buildings including material production and transportation, building construction, operation, refurbishment, recycling, demolition and removal
- · Must have knowledge about sustainable technologies and environmental design concepts
- · Must have knowledge about assessment and certification methods for high performance buildings
- · Must have knowledge about LCC analysis
- Must have knowledge about Cost Optimization

SKILLS

- · Must be able to perform a Life Cycle Assessment a building
- · Must be able to evaluate buildings by using assessment and certification methods for high performance buildings
- · Must be able to perform a LCC analysis
- · Must be able to automate basic cost optimization

COMPETENCES

- Must be able to discuss and reflect on the prospects and limitations of Environmental Assessment Methods and Tools
- · Can evaluate methodologies of building certification methods
- Must be able to evaluate and choose between different building designs based on LCC Analysis and Cost Optimization
- Must be able to discuss and reflect on the prospects and limitations of LCC Analysis and Cost Optimization

TYPE OF INSTRUCTION

Lectures, etc. supplemented with project work, workshops, presentation seminars, lab tests.

EXTENT AND EXPECTED WORKLOAD

Since it is a 5 ECTS project module, the workload is expected to be 150 hours for the student.

EXAM

Name of exam	Environmental Assessment Methods and Life Cycle Cost Analysis	
Type of exam	Written or oral exam Individual oral or written exam	

ECTS	5	
Assessment	7-point grading scale	
Type of grading	Internal examination	
Criteria of assessment	The criteria of assessment are stated in the Examination Policies and Procedures	

Danish title	Bæredygtige vurderingsmetoder og LCC analyse
Module code	B-IE-K2-8
Module type	Course
Duration	1 semester
Semester	Spring
ECTS	5
Language of instruction	English
Location of the lecture	Campus Aalborg
Responsible for the module	<u>Tine Steen Larsen</u>

Study Board	Study Board of the Build Environment
Department	Department of the Built Environment
Faculty	Faculty of Engineering and Science

IT-SYSTEMUDVIKLING

2021/2022

FORUDSÆTNINGER/ANBEFALEDE FORUDSÆTNINGER FOR AT DELTAGE I MODULET

Modulet bygger på viden opnået i modulet Introduktion til Building Information Management (BIM).

MODULETS INDHOLD, FORLØB OG PÆDAGOGIK

Studerende som gennemfører modulet skal opnå følgende viden, færdigheder og kompetencer:

LÆRINGSMÅL

VIDEN

Den studerende skal opnå viden indenfor følgende områder:

- · IT-systemudvikling.
- · Objectorienteret programmering, visuel programming og BIM
- Databaser

FÆRDIGHEDER

Den studerende skal kunne:

- Formulere specifikke krav til et mindre IT-system.
- · Beherske grundlæggende teknikker indenfor objektorienteret programmering
- · Udvikle mindre applikationer ved hjælp af et udviklingsværktøj

KOMPETENCER

Kurset giver den studerende følgende kompetencer:

- · Grundlæggende forståelse for softwareudviklingsprocessen
- · Kan udvikle mindre prototyper af programmer

UNDERVISNINGSFORM

Forelæsninger og øvelser i grupper suppleret med workshops, seminarer og andre former for aktiv læring.

OMFANG OG FORVENTET ARBEJDSINDSATS

Kursusmodulets omfang er 5 ECTS svarende til 150 timers studieindsats.

EKSAMEN

PRØVER

Prøvens navn	IT-systemudvikling
Prøveform	Skriftlig eller mundtlig Individuel mundtlig eller skriftlig eksamen. Eksamensformen fastlægges ved starten af semesteret.
ECTS	5

Bedømmelsesform	7-trins-skala
Censur	Intern prøve
Vurderingskriterier Vurderingskriterierne er angivet i Universitetets eksamensordning	

FAKTA OM MODULET

Engelsk titel	IT System Development
Modulkode	B-BLD-K9
Modultype	Kursus
Varighed	1 semester
Semester	Efterår
ECTS	5
Undervisningssprog	Dansk og engelsk
Tomplads	Ja
Undervisningssted	Campus Aalborg
Modulansvarlig	Kjeld Svidt

Studienævn	Studienævn for Byggeri, By og Miljø
Institut	Institut for Byggeri, By og Miljø
Fakultet	Det Ingeniør- og Naturvidenskabelige Fakultet

FAULT DETECTION AND DIAGNOSIS IN BUILDINGS 2021/2022

PREREQUISITE/RECOMMENDED PREREQUISITE FOR PARTICIPATION IN THE MODULE

A BSc degree in Civil Engineering, Indoor Environmental and Energy Engineering or similar and knowledge gained in the course Control and Analysis of Building Energy Systems or similar.

CONTENT, PROGRESS AND PEDAGOGY OF THE MODULE

Objective:

Students who complete the module:

LEARNING OBJECTIVES

KNOWLEDGE

- Must be able to describe the energy system of a building and its interaction with the Building Energy Management Systems (BEMS)
- · Must be able to understand the different communication protocols
- · Must be able to explain commissioning processes
- · Must have knowledge on the different sources of faults in buildings
- Must be able to describe methods and tools for fault detection at the component, subsystem or whole building level (model- and monitoring-based techniques)
- · Must be able to perform time series analysis

SKILLS

- Must be able to use a Building Energy Management System (BEMS)
- · Must be able to select a commissioning plan based on risk and cost analysis
- · Must be able to detect the sources of faults in buildings
- Must be able to apply fault detection methods and tools based on short-term tests, including Functional Performance Testing (FPT)
- · Must be able to apply fault detection methods and tools based on passive monitoring of buildings

COMPETENCES

- Must be able to combine advanced modelling and measurement techniques to test the performance of components, sub-systems or whole buildings
- Must be able to analyse the energy system of a building and apply in practice different fault detection tools
- · Must be able to rank, prioritize and solve faults

TYPE OF INSTRUCTION

Project work

EXTENT AND EXPECTED WORKLOAD

Since it is a 5 ECTS project module, the workload is expected to be 150 hours for the student.

EXAM

EXAMS

Name of exam	Fault Detection and Diagnosis in Buildings	
Type of exam	Written or oral exam Individual oral or written exam	
ECTS	5	
Assessment	7-point grading scale	
Type of grading	Internal examination	
Criteria of assessment	The criteria of assessment are stated in the Examination Policies and Procedures	

FACTS ABOUT THE MODULE

Danish title	Detektering af fejl og diagnosticering af bygningen og dens tekniske systemer
Module code	B-IE-K3-12
Module type	Course
Duration	1 semester
Semester	Autumn
ECTS	5
Language of instruction	English
Location of the lecture	Campus Aalborg
Responsible for the module	Mingzhe Liu, Rasmus Lund Jensen

Study Board	Study Board of the Build Environment
Department	Department of the Built Environment
Faculty	Faculty of Engineering and Science

ACADEMIC INTERNSHIP

2021/2022

PREREQUISITE/RECOMMENDED PREREQUISITE FOR PARTICIPATION IN THE MODULE

Corresponding to the knowledge gained in 1st and 2nd semester or similar.

CONTENT, PROGRESS AND PEDAGOGY OF THE MODULE

Objective:

Students who complete the module:

LEARNING OBJECTIVES

KNOWLEDGE

 Must have knowledge about analytical, numerical and/or experimental methods for investigation of advanced problems within the company's field.

SKILLS

- Must be able to apply advanced analytical, numerical and/or experimental methods for analysis and assessment of advanced problems within the company's field.
- Must be able to compare and evaluate limitations and uncertainties related to the methods used for solving advanced problems within the company's field.

COMPETENCES

- Must be able to apply proper terminology in oral, written and graphical communication and documentation of problems and solutions within the company's field.
- · Must be able to communicate the results of the project work in a project report

TYPE OF INSTRUCTION

Internship in a company and project work. The study board must approve on the content of the project work before the internship is commenced.

EXTENT AND EXPECTED WORKLOAD

Since it is a 30 ECTS project module, the workload is expected to be 900 hours for the student.

EXAM

Name of exam	Academic Internship	
Type of exam	Oral exam based on a project Oral exam based on presentation seminar and project rapport.	
ECTS	30	
Assessment	7-point grading scale	
Type of grading	Internal examination	

Criteria of assessment	The criteria of assessment are stated in the Examination Policies and Procedures
------------------------	--

Danish title	Projektorienteret forløb i en virksomhed
Module code	B-IE-K3-13
Module type	Project
Duration	1 semester
Semester	Autumn
ECTS	30
Language of instruction	Danish and English
Location of the lecture	Campus Aalborg
Responsible for the module	Mingzhe Liu, Rasmus Lund Jensen

Study Board	Study Board of the Build Environment
Department	Department of the Built Environment
Faculty	Faculty of Engineering and Science

MASTER'S THESIS

2021/2022

PREREQUISITE/RECOMMENDED PREREQUISITE FOR PARTICIPATION IN THE MODULE

The module builds on knowledge corresponding to the first three semesters of the master programme.

CONTENT, PROGRESS AND PEDAGOGY OF THE MODULE

LEARNING OBJECTIVES

KNOWLEDGE

- · Have knowledge and comprehension within the field of the specialization at the highest international level
- · Be able to critically evaluate knowledge and identify new scientific problems within the field of the specialization
- · Have understanding of implications within the related research area including research ethics

SKILLS

- Independently explain choice of scientific theoretical and/or experimental methods
- During the project and when finalising it make an independent and critical estimation of the chosen theories and methods as well as the analyses, results and conclusions
- · Be able to apply a wide range of engineering methods in research and development in the field of specialization
- Be able to communicate relevant scientific and professional aspects of project work in a clear and systematic way both to specialists and the public

COMPETENCES

- Be able to work independently with a project on a specific problem within the field of the specialization at the highest international level
- Independently be able to define and analyse scientific problems and based on that make and state the reasons for the decisions made
- Be competent to solve new and complicated technical problems by the use of advanced mathematics, scientific and technological knowledge
- Be able to evaluate the progress of the project independently and select and include additional literature, experiments or data when needed in order to maintain a scientific basis for the project
- · Be able to control complex and unexpected working situations and be able to develop new solutions
- · Must be able to communicate the results of the project work in a project report

TYPE OF INSTRUCTION

Project work with supervision supplemented with instructions, workshops, presentation seminars, lab tests, etc.

EXTENT AND EXPECTED WORKLOAD

Since it is a 30 ECTS project module, the workload is expected to be 900 hours for the student.

EXAM

Name of exam	Master's Thesis
--------------	-----------------

Type of exam	Master's thesis/final project Oral exam based on presentation seminar and project rapport.	
	The Master's thesis must include an English summary.* If the project is written in English, the summary can be in Danish.** The summary must be at least 1 page and not more than 2 pages. The summary is included in the evaluation of the project as a whole.	
	* Or another foreign language (upon approval from the Board of Studies).	
	** The Board of Studies can grant exemption from this.	
ECTS	30	
Assessme nt	7-point grading scale	
Type of grading	External examination	
Criteria of assessmen t	The criteria of assessment are stated in the Examination Policies and Procedures	

Danish title	Kandidatspeciale
Module code	B-IE-K4-15
Module type	Project
Duration	1 semester
Semester	Spring
ECTS	30
Language of instruction	English
Location of the lecture	Campus Aalborg
Responsible for the module	Rasmus Lund Jensen
Time allocation for external examiners	D

Study Board	Study Board of the Build Environment	
Department	Department of the Built Environment	
Faculty	Faculty of Engineering and Science	

MASTER'S THESIS

2021/2022

PREREQUISITE/RECOMMENDED PREREQUISITE FOR PARTICIPATION IN THE MODULE

The module builds on knowledge corresponding to the first two semesters of the master programme.

CONTENT, PROGRESS AND PEDAGOGY OF THE MODULE

LEARNING OBJECTIVES

KNOWLEDGE

- Have knowledge and comprehension within the field of the specialization at the highest international level
- · Be able to critically evaluate knowledge and identify new scientific problems within the field of the specialization
- · Have understanding of implications within the related research area including research ethics

SKILLS

- Independently explain choice of scientific theoretical and/or experimental methods
- During the project and when finalising it make an independent and critical estimation of the chosen theories and methods as well as the analyses, results and conclusions
- · Be able to apply a wide range of engineering methods in research and development in the field of specialization
- Be able to communicate relevant scientific and professional aspects of project work in a clear and systematic way both to specialists and the public

COMPETENCES

- Be able to work independently with a project on a specific problem within the field of the specialization at the highest international level
- Independently be able to define and analyse scientific problems and based on that make and state the reasons for the decisions made
- Be competent to solve new and complicated technical problems by the use of advanced mathematics, scientific and technological knowledge
- Be able to evaluate the progress of the project independently and select and include additional literature, experiments or data when needed in order to maintain a scientific basis for the project
- · Be able to control complex and unexpected working situations and be able to develop new solutions
- · Must be able to communicate the results of the project work in a project report

TYPE OF INSTRUCTION

Project work with supervision supplemented with instructions, workshops, presentation seminars, lab tests, etc.

The master thesis is conducted as a long master thesis. A long master thesis has to include experimental work and has to be approved by the study board. The amount of experimental work must reflect the allotted ECTS.

EXTENT AND EXPECTED WORKLOAD

Since it is a 50 ECTS project module, the workload is expected to be 1500 hours for the student.

EXAM

Name of exam	Master's Thesis
--------------	-----------------

Type of exam	Master's thesis/final project Oral exam based on presentation seminar and project rapport.	
ECTS	50	
Assessment	7-point grading scale	
Type of grading	External examination	
Criteria of assessment	The criteria of assessment are stated in the Examination Policies and Procedures	

Danish title	Kandidatspeciale
Module code	B-IE-K13-16
Module type	Project
Duration	2 semesters
Semester	Autumn
ECTS	50
Language of instruction	English
Location of the lecture	Campus Aalborg
Responsible for the module	Rasmus Lund Jensen
Time allocation for external examiners	D

Study Board	Study Board of the Build Environment	
Department	Department of the Built Environment	
Faculty	Faculty of Engineering and Science	

MASTER'S THESIS

2021/2022

PREREQUISITE/RECOMMENDED PREREQUISITE FOR PARTICIPATION IN THE MODULE

The module builds on knowledge corresponding to the first two semesters of the master programme.

CONTENT, PROGRESS AND PEDAGOGY OF THE MODULE

LEARNING OBJECTIVES

KNOWLEDGE

- · Have knowledge and comprehension within the field of the specialization at the highest international level
- · Be able to critically evaluate knowledge and identify new scientific problems within the field of the specialization
- · Have understanding of implications within the related research area including research ethics

SKILLS

- Independently explain choice of scientific theoretical and/or experimental methods
- During the project and when finalising it make an independent and critical estimation of the chosen theories and methods as well as the analyses, results and conclusions
- · Be able to apply a wide range of engineering methods in research and development in the field of specialization
- Be able to communicate relevant scientific and professional aspects of project work in a clear and systematic way both to specialists and the public

COMPETENCES

- Be able to work independently with a project on a specific problem within the field of the specialization at the highest international level
- Independently be able to define and analyse scientific problems and based on that make and state the reasons for the decisions made
- Be competent to solve new and complicated technical problems by the use of advanced mathematics, scientific and technological knowledge
- Be able to evaluate the progress of the project independently and select and include additional literature, experiments or data when needed in order to maintain a scientific basis for the project
- · Be able to control complex and unexpected working situations and be able to develop new solutions
- · Must be able to communicate the results of the project work in a project report

TYPE OF INSTRUCTION

Project work with supervision supplemented with instructions, workshops, presentation seminars, lab tests, etc.

The master thesis is conducted as a long master thesis. A long master thesis has to include experimental work and has to be approved by the study board. The amount of experimental work must reflect the allotted ECTS

EXTENT AND EXPECTED WORKLOAD

Since it is a 45 ECTS project module, the workload is expected to be 1350 hours for the student.

EXAM

Name of exam	Master's Thesis
--------------	-----------------

Type of exam	Master's thesis/final project Oral exam based on presentation seminar and project rapport.	
ECTS	45	
Assessment	7-point grading scale	
Type of grading	External examination	
Criteria of assessment	The criteria of assessment are stated in the Examination Policies and Procedures	

Danish title	Kandidatspeciale
Module code	B-IE-K13-17
Module type	Project
Duration	2 semesters
Semester	Autumn
ECTS	45
Language of instruction	English
Location of the lecture	Campus Aalborg
Responsible for the module	Rasmus Lund Jensen
Time allocation for external examiners	D

Study Board	Study Board of the Build Environment	
Department	Department of the Built Environment	
Faculty	Faculty of Engineering and Science	

ADVANCED MODELLING OF ENERGY TRANSPORT IN BUILDINGS AND HVAC SYSTEMS

2021/2022

CONTENT, PROGRESS AND PEDAGOGY OF THE MODULE

LEARNING OBJECTIVES

KNOWLEDGE

Students who complete the module:

- · Must be able to describe the mathematical models for the dynamic conditions of buildings and HVAC systems
- Must be able to explain the analytic and/or numerical solutions of these models
- · Must be able to understand how building models and HVAC system models are combined and interact

SKILLS

Students who complete the module:

- Must be able to analyse and simulate a thermal system under varying load conditions
- Must be able to apply both simple and advanced calculation methods for analysis and simulation of temperature conditions and heat flows in buildings and elements in HVAC systems under dynamic load conditions
- Must be able to apply experimental methods for verification of the calculated systems
- · Must be able to establish proper boundary conditions comprising heat conduction, radiation and convection

COMPETENCES

Students who complete the module:

- · Must be able to evaluate, optimise and combine models for energy transport in buildings and HVAC systems
- Must be able to communicate the results of the project work in a project report
- Must be able to contribute successfully to teamwork within the problem area and make a common presentation of the result of the project work

TYPE OF INSTRUCTION

Project work with supervision supplemented with instructions, workshops, presentation seminars, lab tests, etc.

EXTENT AND EXPECTED WORKLOAD

Since it is a 20 ECTS project module, the workload is expected to be 600 hours for the student.

EXAM

Name of exam	Advanced Modelling of Energy Transport in Buildings and HVAC Systems	
Type of exam	Oral exam based on a project Oral exam based on presentation seminar and project rapport.	
ECTS	20	
Assessment	7-point grading scale	

Type of grading	Internal examination	
Criteria of assessment The criteria of assessment are stated in the Examination Policies and Procedures		

Danish title	Avanceret modellering af energitransport i bygninger og VVS installationer	
Module code	B-IE-K3-10	
Module type	Project	
Duration	1 semester	
Semester	Autumn	
ECTS	20	
Language of instruction	English	
Empty-place Scheme	Yes	
Location of the lecture	Campus Aalborg	
Responsible for the module	Rasmus Lund Jensen	

Study Board	Study Board of the Build Environment	
Department	Department of the Built Environment	
Faculty	Faculty of Engineering and Science	

BUILDING COMMISSIONING AND OPERATION 2021/2022

PREREQUISITE/RECOMMENDED PREREQUISITE FOR PARTICIPATION IN THE MODULE

The module builds on knowledge corresponding to 2nd semester and knowledge gained in Control and Analysis of Building Energy Systems and Fault Detection in Buildings or similar.

CONTENT, PROGRESS AND PEDAGOGY OF THE MODULE

LEARNING OBJECTIVES

KNOWLEDGE

Students who complete the module:

- · Must have knowledge about building Commissioning and Operation
- · Must have knowledge about standards and state of art within building Commissioning
- · Must have knowledge about energy efficient operation of buildings.

SKILLS

Students who complete the module:

- · Must be able to apply commissioning processes for energy efficient building design and operation
- Must be able to apply, combine and evaluate advanced methods for analysis of the interplay between energy systems, building use, outdoor climate, HVAC systems and Building Management Systems (BEMS)
- Must be able to analyse a building with focus on operation and reduced running cost.

COMPETENCES

Students who complete the module:

- Must be able to apply proper terminology in oral, written and graphical communication and documentation of problems and solutions within Commissioning and Operation of building and its services
- Must be able to optimise the operation of buildings based on measurement and analysis of the performance of the building
- · Must be able to handle complex cases related to Commissioning and Operation of energy efficients buildings
- · Must be able to communicate the results of the project work in a project report
- Must be able to contribute successfully to teamwork within the problem area and make a common presentation of the result of the project work

TYPE OF INSTRUCTION

Project work with supervision supplemented with instructions, workshops, presentation seminars, lab tests, etc.

EXTENT AND EXPECTED WORKLOAD

Since it is a 20 ECTS project module, the workload is expected to be 600 hours for the student.

EXAM

Name of exam	Building Commissioning and Operation
--------------	--------------------------------------

Type of exam	Oral exam based on a project Oral exam based on presentation seminar and project rapport.	
ECTS	20	
Assessment	7-point grading scale	
Type of grading	Internal examination	
Criteria of assessment	The criteria of assessment are stated in the Examination Policies and Procedures	

Danish title	Bygningens ibrugtagning og drift
Module code	B-IE-K3-9
Module type	Project
Duration	1 semester
Semester	Autumn
ECTS	20
Language of instruction	English
Empty-place Scheme	Yes
Location of the lecture	Campus Aalborg
Responsible for the module	Rasmus Lund Jensen

Study Board	Study Board of the Build Environment
Department	Department of the Built Environment
Faculty	Faculty of Engineering and Science