

STUDIEORDNING FOR KANDIDATUDDANNELSEN I MATEMATIK-TEKNOLOGI, 2017

CIVILINGENIØR AALBORG

MODULER SOM INDGÅR I STUDIEORDNINGEN

INDHOLDSFORTEGNELSE

Information Processing in Technical Systems 2019/2020	3
Information and Coding Theory 2019/2020	5
Machine Learning 2019/2020	7
Array and Sensor Signal Processing 2019/2020	9
Signal/Data Processing Systems 2019/2020	1
Compressive Sensing 2019/2020	3
Bayesiansk inferens og modeller med tilfældige effekter 2019/2020	5
Tidsrækkeanalyse og økonometri 2019/2020	7
Long Master's Thesis, 60 ECTS 2019/2020	9
Master's Thesis. 30 ECTS 2019/2020	.1
Selected Advanced Topics in Mathematics and Technology with a Focus on Mathematical Problems 2019/2020	:3
Specialisering i videregående matematiske og teknologiske emner med fokus på teknologiske problemstillinger 2019/2020	:5

INFORMATION PROCESSING IN TECHNICAL SYSTEMS 2019/2020

CONTENT, PROGRESS AND PEDAGOGY OF THE MODULE

LEARNING OBJECTIVES

KNOWLEDGE

- · have knowledge about modern statistical signal processing and its application to information processing systems
- have knowledge about information and coding theory and their application to information and communication technology systems and/or machine learning and its applications to technical science

SKILLS

- must be able to perform an analysis of complex theoretical problems, where there is a need for tools from statistical signal processing, information theory or machine learning
- must be able to handle problems with noisy data and signals
- must be able to design algorithms solving a given technical problem

COMPETENCES

Competencies:

- must be able to discuss and reason at the given level using mathematical terms from modern signal processing, as well as information theory, coding theory or machine learning
- must be able to both orally and in writing to present precise and reproducible documentation for the solutions developed

TYPE OF INSTRUCTION

Project work.

EXTENT AND EXPECTED WORKLOAD

This is a 15 ECTS project module and the work load is expected to be 450 hours for the student.

EXAM

Name of exam	Information Processing in Technical Systems
Type of exam	Oral exam based on a project
ECTS	15
Permitted aids	All written and all electronic aids
Assessment	7-point grading scale
Type of grading	Internal examination

Criteria of assessment	The criteria of assessment are stated in the Examination Policies and Procedures
------------------------	--

Danish title	Informationsbehandling i teknologiske systemer
Module code	F-MTK-K1-1
Module type	Project
Duration	1 semester
Semester	Autumn
ECTS	15
Language of instruction	Danish and English
Empty-place Scheme	Yes
Location of the lecture	Campus Aalborg
Responsible for the module	<u>Thomas Arildsen</u>

Study Board	Study Board of Mathematics, Physics and Nanotechnology
Department	Department of Mathematical Sciences
Faculty	Faculty of Engineering and Science

INFORMATION AND CODING THEORY 2019/2020

PREREQUISITE/RECOMMENDED PREREQUISITE FOR PARTICIPATION IN THE MODULE

The module builds on knowledge obtained by the modules Probability Theory and Linear Algebra on the Bachelor of Science (BSc) in Engineering (Mathematical Engineering).

CONTENT, PROGRESS AND PEDAGOGY OF THE MODULE

LEARNING OBJECTIVES

KNOWLEDGE

- knowledge of information theoretical concepts such as entropy, mutual information, divergence, the chain rule for entropy, empirical entropy
- knowledge of lossless data compression, entropy coding, lossy data compression (rate distortion theory)
- · knowledge of channel capacity and error-correcting codes
- · knowledge of joint source-channel coding and the separation principle

SKILLS

- are able to give a theoretical description of the entropy of a signal and in practice estimate the entropy of simple signals
- are able to design efficient entropy codes for simple signals
- are able to use information inequalities to provide bounds on optimal performance of simple systems
- arte able to construct error-correcting codes with good properties and parameters
- are able to decode error-correcting codes efficiently (e.g. Reed-Solomon codes)
- understand the interaction between bitrate and distortion (reconstruction error) in connection with source coding
- · understand the interaction between bitrate and error probability in connection with channel coding
- are able to perform calculations in finite fields

COMPETENCES

- have a good intuition and understanding of the concept of entropy and its significance regarding the information within a signal
- be able to use mathematical tools to discover and investigate the fundamental mathematical tools that describes data transmission, data reduction and data storage

TYPE OF INSTRUCTION

Lectures with exercises.

EXTENT AND EXPECTED WORKLOAD

This is a 5 ECTS course module and the work load is expected to be 150 hours for the student.

EXAM

PREREQUISITE FOR ENROLLMENT FOR THE EXAM

• In order to participate in the course evaluation, students must have actively participated in course progress by way of one or several independent oral and/or written contributions.

EXAMS

Name of exam	Information and Coding Theory
Type of exam	Written or oral exam
ECTS	5
Assessment	7-point grading scale
Type of grading	Internal examination
Criteria of assessment	The criteria of assessment are stated in the Examination Policies and Procedures

FACTS ABOUT THE MODULE

Danish title	Information og kodningsteori
Module code	F-MTK-K1-2
Module type	Course
Duration	1 semester
Semester	Autumn
ECTS	5
Language of instruction	Danish and English
Empty-place Scheme	Yes
Location of the lecture	Campus Aalborg
Responsible for the module	Petar Popovski, Ignacio Cascudo Pueyo

Study Board	Study Board of Mathematics, Physics and Nanotechnology
Department	Department of Mathematical Sciences
Faculty	Faculty of Engineering and Science

MACHINE LEARNING

2019/2020

PREREQUISITE/RECOMMENDED PREREQUISITE FOR PARTICIPATION IN THE MODULE

Basic knowledge in probability theory, statistics, and linear algebra.

CONTENT, PROGRESS AND PEDAGOGY OF THE MODULE

Objective

The course gives a comprehensive introduction to machine learning, which is a field concerned with learning from examples and has roots in computer science, statistics and pattern recognition. The objective is realized by presenting methods and tools proven valuable and by addressing specific application problems.

LEARNING OBJECTIVES

KNOWLEDGE

- Must have knowledge about supervised learning methods including K-nearest neighbor's, decision trees, linear discriminant analysis, support vector machines and neural networks
- Must have knowledge about unsupervised learning methods including: K-means, Gaussian mixture model, hidden Markov model, EM algorithm, and principal component analysis
- Must have knowledge about probabilistic graphical models, variational Bayesian methods, belief propagation, and mean-field approximation
- · Must have knowledge about Bayesian decision theory, bias and variance trade-off, and cross-validation.
- · Must be able to understand reinforcement learning

SKILLS

- · Must be able to apply the taught methods to solve concrete engineering problems
- Must be able to evaluate and compare the methods within a specific application problem

COMPETENCES

- Must have competencies in analyzing a given problem and identifying appropriate machine learning methods to the problem
- · Must have competencies in understanding the strengths and weaknesses of the methods

TYPE OF INSTRUCTION

The program is based on a combination of academic, problem-oriented and interdisciplinary approaches and organized based on the following work and evaluation methods that combine skills and reflection:

- · Lectures
- · Classroom instruction
- · Project work
- Workshops
- Exercises (individually and in groups)
- Teacher feedback
- · Reflection
- · Portfolio work

EXTENT AND EXPECTED WORKLOAD

Since it is a 5 ECTS course module, the work load is expected to be 150 hours for the student

EXAM

EXAMS

Name of exam	Machine Learning
Type of exam	Written or oral exam
ECTS	5
Assessment	Passed/Not Passed
Type of grading	Internal examination
Criteria of assessment	The criteria of assessment are stated in the Examination Policies and Procedures

ADDITIONAL INFORMATION

Elective course

On this semester two courses must be chosen out of three elective courses (total: 10 ECTS).

FACTS ABOUT THE MODULE

Danish title	Maskinlæring
Module code	N-IRS-K3-3
Module type	Course
Duration	1 semester
Semester	Autumn
ECTS	5
Language of instruction	English
Empty-place Scheme	Yes
Location of the lecture	Campus Esbjerg
Responsible for the module	Birgitte Bak-Jensen

Study Board	Study Board of Energy
Department	Department of Energy Technology
Faculty	Faculty of Engineering and Science

ARRAY AND SENSOR SIGNAL PROCESSING 2019/2020

CONTENT, PROGRESS AND PEDAGOGY OF THE MODULE

LEARNING OBJECTIVES

KNOWLEDGE

- Must have knowledge about the Cramér-Rao lower bound (CRLB) as well as (asymptotic) optimal unbiased estimators such as minimum variance unbiased estimator, maximum likelihood, and least-squares.
- Must have knowledge about 1- and 2-dimensional spectral estimation methods such as the period gram, the Yule-Walker equations, subspace-based methods (MUSIC and ESPRIT), and filter-bank methods (Capon's method and Amplitude and Phase Estimation (APES)).
- Must have knowledge about fundamental terms and methods applied for design and analysis of adaptive filter such
 as Steepest descent, least-mean-square (LMS), normalized LMS (NLMS), affine projections (AP), recursive
 least-squares (RLS), transient and steady-state performance.
- Must have knowledge about terms and methods applied for design and analysis of multi-rate signal processing systems, such as Hilbert transform, Noble identities, poly-phase decomposition, commutators, re-sampling, as well as up- and down-sampling.

SKILLS

- · Must be able to compare the estimation performance of unbiased estimators by using the CRLB.
- Must be able to apply methods and algorithms for parametric and non-parametric spectral estimation on 1- and 2-dimensional signals.
- Must be able to implement fundamental adaptive filters such as the (normalized) least-mean-square filter, the affine
 projection filter, and the recursive least-squares filter.
- · Must be able to apply fundamental methods for analysis, design, and implementation of poly-phase filters.

COMPETENCES

- Must have competencies in analyzing a given problem which in its solution requires advanced signal processing methodologies and next identify appropriate methods and algorithms to solve the problem.
- Must have competencies in understanding the strengths and weaknesses of the methods

TYPE OF INSTRUCTION

As described in § 17.

EXAM

Name of exam	Array and Sensor Signal Processing
Type of exam	Written or oral exam
ECTS	5
Assessment	Passed/Not Passed
Type of grading	Internal examination
Criteria of assessment	The criteria of assessment are stated in the Examination Policies and Procedures

Danish title	Array- og sensor signalbehandling
Module code	ESNSPAK3K1
Module type	Course
Duration	1 semester
Semester	Autumn
ECTS	5
Language of instruction	English
Empty-place Scheme	Yes
Location of the lecture	Campus Aalborg
Responsible for the module	Ove Kjeld Andersen

Study Board	Study Board of Electronics and IT	
Department	Department of Electronic Systems	
Faculty	Technical Faculty of IT and Design	

SIGNAL/DATA PROCESSING SYSTEMS 2019/2020

CONTENT, PROGRESS AND PEDAGOGY OF THE MODULE

LEARNING OBJECTIVES

KNOWLEDGE

- must have knowledge about compression of one and two dimensional signal/data representations
- · must have knowledge about classical and Baysian statistical methods for processing of noisy signals
- · must have knowledge about simulation techniques and in particular about Markov chain and Monte Carlo methods
- must have knowledge about how sparse representations and statistical techniques influences real-world data/signals

SKILLS

- must be able to use Baysian and hierarchical statistical methods to analyse time series and lattice data and to evaluate the validity of the results obtained
- must be able to use compressed signal/data representations on real or synthetic data and be able to evaluate the quality of the signal/data reconstruction

COMPETENCES

- are able to communicate results of statistical analyses to non-specialists within advanced signal processing
- are able to independently develop statistical models suitable for analysis of real-world signals such as noisy digital images or communication signals
- are able to use sparse representations and/or statistical methods to solve a given practical problem and, if needed, make minor adjustments to the methods to obtain the wanted functionality

TYPE OF INSTRUCTION

Project work.

EXTENT AND EXPECTED WORKLOAD

This is a 15 ECTS project module and the work load is expected to be 450 hours for the student.

EXAM

Name of exam	Signal/Data Processing Systems	
Type of exam	Oral exam based on a project	
ECTS	15	
Permitted aids	All written and all electronic aids	

Assessment	7-point grading scale	
Type of grading	External examination	
Criteria of assessment The criteria of assessment are stated in the Examination Policies and Procedures		

Danish title	Signal/databehandlende systemer
Module code	F-MTK-K2-1
Module type	Project
Duration	1 semester
Semester	Spring
ECTS	15
Language of instruction	Danish and English
Empty-place Scheme	Yes
Location of the lecture	Campus Aalborg
Responsible for the module	Jan Østergaard, Svante Eriksen

Study Board	Study Board of Mathematics, Physics and Nanotechnology	
Department	Department of Mathematical Sciences	
Faculty	Faculty of Engineering and Science	

COMPRESSIVE SENSING 2019/2020

CONTENT, PROGRESS AND PEDAGOGY OF THE MODULE

LEARNING OBJECTIVES

KNOWLEDGE

- must have knowledge of compressed (sparse) representation of signals/data in one and two dimensions
- must have knowledge of the concepts measurement matrix and dictionary
- must have knowledge of hardware realizations at block level, which use compressive representation of signals/data (e.g. multi-coset and random demodulator architectures)
- must have knowledge of the relation between compressed representation and classical representation of signals/data
- must have knowledge of key concepts and methods within compressed signal/data representation
- must have knowledge of formulation of signal/data reconstruction as different types of optimization problems (e.g. Greedy Pursuit and Orthogonal Matching Pursuit)

SKILLS

- must be able to apply compressed signal/data representation in analysis- and/or synthesis-related applications
- · must be able to simulate and assess the quality of signals/data which are represented in compressed form

COMPETENCES

- must be able to assess when compressed signal/data representation is appropriate
- must be able to formulate the basic elements for a given signal/data type and assess the signal/data quality in relation to the number of signal/data components

TYPE OF INSTRUCTION

As described in §17.

EXTENT AND EXPECTED WORKLOAD

This is a 5 ECTS course module and the work load is expected to be 150 hours for the student.

EXAM

PREREQUISITE FOR ENROLLMENT FOR THE EXAM

• In order to participate in the course evaluation, students must have actively participated in course progress by way of one or several independent oral and/or written contributions.

Name of exam	Compressive Sensing
--------------	---------------------

Type of exam	Written or oral exam	
ECTS	5	
Assessment	Passed/Not Passed	
Type of grading	Internal examination	
Criteria of assessment	The criteria of assessment are stated in the Examination Policies and Procedures	

Danish title	Komprimeret signal-/dataanalyse og syntese
Module code	F-MTK-K2-2
Module type	Course
Duration	1 semester
Semester	Spring
ECTS	5
Language of instruction	Danish and English
Empty-place Scheme	Yes
Location of the lecture	Campus Aalborg
Responsible for the module	Morten Nielsen, Thomas Arildsen

Study Board	Study Board of Mathematics, Physics and Nanotechnology	
Department	Department of Mathematical Sciences	
Faculty	Faculty of Engineering and Science	

BAYESIANSK INFERENS OG MODELLER MED TILFÆLDIGE EFFEKTER

2019/2020

FORUDSÆTNINGER/ANBEFALEDE FORUDSÆTNINGER FOR AT DELTAGE I MODULET

Modulet bygger på viden opnået i modulet Statistisk inferens for lineære modeller.

MODULETS INDHOLD, FORLØB OG PÆDAGOGIK

LÆRINGSMÅL

VIDEN

- · har viden om den generelle lineære model med tilfældige effekter
- har viden om maksimum likelihood inferens for den generelle lineære model med tilfældige effekter
- · har viden om prædiktion af tilfældige effekter
- · har viden om Bayesiansk inferens
- · har viden om prior fordelinger i Bayesiansk inferens
- · har viden om beregningsmæssige aspekter af Bayesiansk inferens

FÆRDIGHEDER

- skal for et konkret datasæt kunne identificere mulige kilder til tilfældig variation og opstille en relevant model med tilfældige effekter
- · skal kunne gennemføre maximum likelihood- og Bayesiansk inferens for den opstillede model

KOMPETENCER

 skal kunne redegøre for teori og praksis for forskellige tilgange til inferens baseret på modeller med tilfældige effekter

UNDERVISNINGSFORM

Som beskrevet i §17.

OMFANG OG FORVENTET ARBEJDSINDSATS

Kursusmodulets omfang er 5 ECTS svarende til 150 timers studieindsats.

EKSAMEN

PRØVER

Prøvens navn	Bayesiansk inferens og modeller med tilfældige effekter	
Prøveform	Aktiv deltagelse/løbende evaluering	
ECTS	5	
Bedømmelsesform	Bestået/ikke bestået	
Censur	Intern prøve	
Vurderingskriterier	Vurderingskriterierne er angivet i Universitetets eksamensordning	

YDERLIGERE INFORMATIONER

Hvis kurset følges af studerende på kandidatuddannelse skal følgende ekstra kompetencemål opfyldes:

- Be able to reflect on the discipline's approach to academic problems at a high level and the discipline's relationship to other subject areas.
- Be able to involve the knowledge area in solving complex problems and thus achieve a new understanding of a given subject area.

FAKTA OM MODULET

Engelsk titel	Bayesian Inference and Mixed Models
Modulkode	F-MAT-K2-2
Modultype	Kursus
Varighed	1 semester
Semester	Forår
ECTS	5
Undervisningssprog	Dansk og engelsk
Tomplads	Ja
Undervisningssted	Campus Aalborg
Modulansvarlig	Rasmus Waagepetersen

Studienævn	Studienævn for Matematik, Fysik og Nanoteknologi	
Institut	Institut for Matematiske Fag	
Fakultet	Det Ingeniør- og Naturvidenskabelige Fakultet	

TIDSRÆKKEANALYSE OG ØKONOMETRI 2019/2020

FORUDSÆTNINGER/ANBEFALEDE FORUDSÆTNINGER FOR AT DELTAGE I MODULET

Modulet bygger på viden opnået i modulet Statistisk inferens for lineære modeller.

MODULETS INDHOLD, FORLØB OG PÆDAGOGIK

LÆRINGSMÅL

VIDEN

- kender til betingning i den flerdimensionale normalfordeling samt sædvanlig og generaliseret mindste kvadraters metode og de derved fremkomne OLS og GLS estimatorer
- kan forstå tidsrækkeanalyse som en stokastisk proces og forstå sammenhængen mellem stokastiske processer og dynamiske systemer og kender til de stokastiske processer kendt som Box-Jenkins modellerne, herunder især ARMA modellerne
- kender til forskellige stationaritetsbegreber for ARMA modeller: Svag og stærk stationaritet samt autokovarians- og autokorrelationsfunktioner
- kender forskellige moderne tidsrække- og tidsrækkeøkonometriske modeller indenfor finanseringsøkonometri og financial engineering

FÆRDIGHEDER

- er i stand til teoretisk at fortolke tidsrækkemodellernes statistiske og eventuelle økonometriske egenskaber
- kan foretage alle faserne i en klassisk tidsrækkenalyse: Identifikation, estimation, modelkontrol, prædiktion og statistisk/økonometrisk fortolkning
- kan bruge korrelogrammer og andre grafiske hjælpemidler i identifikationsfasen
- kan anvende og sætte sig ind i nyere statistiske metoder til analyse af tidsrækker

KOMPETENCER

- er i stand til at anvende tidsrækkeanalysens begreber i en økonometrisk eller anden praktisk sammenhæng
- kan foretage kvalificerede økonometriske analyser på finansielle data og andre tidsrækkedata herunder estimation og prædiktion i praksis vha. passende software

UNDERVISNINGSFORM

Som beskrevet i §17.

OMFANG OG FORVENTET ARBEJDSINDSATS

Kursusmodulets omfang er 5 ECTS svarende til 150 timers studieindsats.

EKSAMEN

PRØVER

Prøvens navn	Tidsrækkeanalyse og økonometri
Prøveform	Skriftlig eller mundtlig
ECTS	5
Bedømmelsesform	7-trins-skala
Censur	Intern prøve
Vurderingskriterier	Vurderingskriterierne er angivet i Universitetets eksamensordning

YDERLIGERE INFORMATIONER

Hvis kurset følges i en kandidatstudieordning, skal den studerende opfylde ekstra kompetencemål.

Hvis kurset følges i en kandidatstudieordning: In order to participate in the course evaluation, students must have actively participated in course progress by way of one or several independent oral and/or written contributions.

FAKTA OM MODULET

Engelsk titel	Time Series and Econometrics
Modulkode	F-MOK-B6-3
Modultype	Kursus
Varighed	1 semester
Semester	Forår
ECTS	5
Undervisningssprog	Dansk og engelsk
Tomplads	Ja
Undervisningssted	Campus Aalborg
Modulansvarlig	Ege Rubak

Studienævn	Studienævn for Matematik, Fysik og Nanoteknologi	
Institut	Institut for Matematiske Fag	
Fakultet	Det Ingeniør- og Naturvidenskabelige Fakultet	

LONG MASTER'S THESIS, 60 ECTS 2019/2020

CONTENT, PROGRESS AND PEDAGOGY OF THE MODULE

The student has the possibility to write a Long Master's Thesis (over 2 semesters: 60 ECTS), if the thesis is of experimental character and approved by the study board. The amount of experimental work must reflect the allotted ECTS.

LEARNING OBJECTIVES

KNOWLEDGE

- have expert understanding within one or a few selected elements of a central mathematical or engineering science subject area based on international research on a high level, or has a broader insight into a central mathematical or engineering subject area regarding theories and methods as well as central elements and their interrelationships
- must be able to understand and on a scientific basis reflect upon the knowledge of the subject area and be able to identify scientific problems within mathematics and engineering science

SKILLS

- must be able to identify, formulate and to analyze a scientific mathematical technological problem independently, systematically and critically
- must be able to relate the problem to the mathematical and engineering subject area, including explaining the choices that have been made in connection to the delimitation of the problem
- must be able to independently make and justify the choice of mathematical theories and scientific theoretical and/or experimental methods
- must be able to independently and critically evaluate the chosen theories and methods as well as the analyses, results and conclusions in the project, both during and at the end of the project period
- must be able to evaluate and choose between the scientific theories, methods, tools, and general skills within the
 mathematical subject area

COMPETENCES

- must be able to control work and development situations which are complex, unpredictable and require new mathematical and/or engineering models or methods for solution
- must be able to initiate and complete mathematically and/or engineering oriented collaborations, and if relevant also interdisciplinary collaborations, as well as assume professional responsibility
- · must be able to independently assume responsibility for own professional development and specialisation

TYPE OF INSTRUCTION

Project work.

EXTENT AND EXPECTED WORKLOAD

This is a 60 ECTS project module and the work load is expected to be 1800 hours for the student.

EXAM

Name of exam	Long Master's Thesis, 60 ECTS
--------------	-------------------------------

Type of exam	Oral exam based on a project	
ECTS	60	
Permitted aids	All written and all electronic aids	
Assessment	7-point grading scale	
Type of grading	External examination	
Criteria of assessment	The criteria of assessment are stated in the Examination Policies and Procedures	

Danish title	Langt kandidatspeciale, 60 ECTS
Module code	F-MTK-K3-3
Module type	Project
Duration	2 semesters
Semester	Autumn
ECTS	60
Language of instruction	Danish and English
Location of the lecture	Campus Aalborg
Responsible for the module	Thomas Arildsen, Ignacio Cascudo Pueyo, Zheng-Hua Tan, Morten Nielsen

Study Board	Study Board of Mathematics, Physics and Nanotechnology
Department	Department of Mathematical Sciences
Faculty	Faculty of Engineering and Science

MASTER'S THESIS. 30 ECTS 2019/2020

CONTENT, PROGRESS AND PEDAGOGY OF THE MODULE

Students who have completed the module meet the following criteria within at least one central mathematical/statistical area:

LEARNING OBJECTIVES

KNOWLEDGE

- have expert understanding within one or a few selected elements of a central mathematical or engineering science subject area based on international research on a high level, or has a broader insight into a central mathematical or engineering subject area regarding theories and methods as well as central elements and their interrelationships
- must be able to understand and on a scientific basis reflect upon the knowledge of the subject area and be able to identify scientific problems within mathematics and engineering science

SKILLS

- must be able to identify, formulate and to analyze a scientific mathematical technological problem independently, systematically and critically
- must be able to relate the problem to the mathematical and engineering subject area, including explaining the choices that have been made in connection to the delimitation of the problem
- must be able to independently make and justify the choice of mathematical theories and scientific theoretical and/or experimental methods
- must be able to independently and critically evaluate the chosen theories and methods as well as the analyses, results and conclusions in the project, both during and at the end of the project period
- must be able to evaluate and choose between the scientific theories, methods, tools, and general skills within the mathematical subject area

COMPETENCES

- must be able to control work and development situations which are complex, unpredictable and require new mathematical and/or engineering models or methods for solution
- must be able to initiate and complete mathematically and/or engineering oriented collaborations, and if relevant also interdisciplinary collaborations, as well as assume professional responsibility
- must be able to independently assume responsibility for own professional development and specialisation

TYPE OF INSTRUCTION

Project work.

EXTENT AND EXPECTED WORKLOAD

This is a 30 ECTS project module and the work load is expected to be 900 hours for the student.

EXAM

EXAMS

Name of exam	Master's Thesis. 30 ECTS
Type of exam	Oral exam based on a project
ECTS	30
Permitted aids	All written and all electronic aids
Assessment	7-point grading scale
Type of grading	External examination
Criteria of assessment	The criteria of assessment are stated in the Examination Policies and Procedures

FACTS ABOUT THE MODULE

Danish title	Kandidatspeciale. 30 ECTS
Module code	F-MTK-K4-1
Module type	Project
Duration	1 semester
Semester	Spring
ECTS	30
Language of instruction	Danish and English
Location of the lecture	Campus Aalborg
Responsible for the module	Morten Nielsen

Study Board	Study Board of Mathematics, Physics and Nanotechnology	
Department	Department of Mathematical Sciences	
Faculty	Faculty of Engineering and Science	

SELECTED ADVANCED TOPICS IN MATHEMATICS AND TECHNOLOGY WITH A FOCUS ON MATHEMATICAL PROBLEMS

2019/2020

CONTENT, PROGRESS AND PEDAGOGY OF THE MODULE

LEARNING OBJECTIVES

KNOWLEDGE

- must have extensive knowledge of relevant theory and methods within one or more selected areas of mathematics, and to a lesser degree, knowledge about one or more areas within engineering science
- · must have extensive knowledge about one or more applications of the theory and methods
- must be able to understand, and to reflect scientifically over knowledge within mathematics and engineering science and to be able to identify mathematical and technological problems

SKILLS

- are able to independently to apply relevant mathematical theory and methods to identification, statement and analysis of technological problems
- are able to communicate research based knowledge, and is able to discuss professional and scientific problems with peers both within mathematics and engineering science, as well as with non-specialists

COMPETENCES

- are able to independently to initiate and complete interdisciplinary development projects based on advanced mathematical modelling and methods from engineering science, and is able in that context, to professionally take charge of implementing derived models and methods
- are able to independently to take charge of self-development and one's own professional development and specialization within mathematics and engineering science

TYPE OF INSTRUCTION

Project work.

EXTENT AND EXPECTED WORKLOAD

This is a 30 ECTS project module and the work load is expected to be 900 hours for the student

EXAM

Name of exam	Selected Advanced Topics in Mathematics and Technology with a Focus on Mathematical Problems
Type of exam	Oral exam based on a project
ECTS	30

Permitted aids	All written and all electronic aids
Assessment	7-point grading scale
Type of grading	Internal examination
Criteria of assessment	The criteria of assessment are stated in the Examination Policies and Procedures

Danish title	Specialisering i videregående matematiske og teknologiske emner med fokus på matematiske problemstillinger
Module code	F-MTK-K3-1
Module type	Project
Duration	1 semester
Semester	Autumn
ECTS	30
Language of instruction	Danish and English
Empty-place Scheme	Yes
Location of the lecture	Campus Aalborg
Responsible for the module	Morten Nielsen

Study Board	Study Board of Mathematics, Physics and Nanotechnology
Department	Department of Mathematical Sciences
Faculty	Faculty of Engineering and Science

SPECIALISERING I VIDEREGÅENDE MATEMATISKE OG TEKNOLOGISKE EMNER MED FOKUS PÅ TEKNOLOGISKE PROBLEMSTILLINGER

2019/2020

MODULETS INDHOLD, FORLØB OG PÆDAGOGIK

UNDERVISNINGSFORM

Projektarbejde.

EKSAMEN

PRØVER

Prøvens navn	Specialisering i videregående matematiske og teknologiske emner med fokus på teknologiske problemstillinger
Prøveform	Mundtlig pba. projekt
ECTS	30
Bedømmelsesform	7-trins-skala
Censur	Intern prøve
Vurderingskriterier	Vurderingskriterierne er angivet i Universitetets eksamensordning

FAKTA OM MODULET

Engelsk titel	Selected Advanced Topics in Mathematics and Technology with a Focus on Technical Problems
Modulkode	F-MTK-K3-2
Modultype	Projekt
Varighed	1 semester
Semester	Efterår
ECTS	30
Undervisningssprog	Dansk og engelsk
Tomplads	Ja
Undervisningssted	Campus Aalborg
Modulansvarlig	Morten Nielsen

Studienævn	Studienævn for Matematik, Fysik og Nanoteknologi
Institut	Institut for Matematiske Fag
Fakultet	Det Ingeniør- og Naturvidenskabelige Fakultet